AQSA International Congress 2023

ENGINEERING FOR A MORE RESILIENT CONSTRUCTION INDUSTRY

Ir. Prof Dr Norlida Buniyamin President

Engineering has been the building block of civilisation since the beginning of time.

Today, it is a field that propels a NATION to MODERNITY.

Engineering combines knowledge of mathematical & natural sciences gained by study, experience & practice in applying judgement to develop ways to utilise, economically, the materials and forces of nature for the benefit of mankind.

is defined as:

A body of certain kind of organised, well-founded and repeatable knowledge.

Technology

is defined as:

A field that requires the application of scientific & engineering knowledge & methods combined with technical skills in support of engineering activities.

ENGINEERING

is therefore defined as

an ART,

a Science

and

Technology

Let's ponder a bit and have a look at how engineering has contributed over the centuries to the world and the Malaysia that we are living in today!

Early Malaya was dependent on agriculture,

Relationship framework as Malaysia moves from agricultural-based economy to knowledge-based economy (Singh 2010)

The Evolution of E&E in Malaysia

1970s mple components, miconductor parts sembly and semi- tocked-down electrical	1980s Consumer electronics parts to full assembly	 Fully a manufaciliti Desig development
oducts	6	

20 R8

IC

De

00s-2010s	Now
D centres & System sign afer fab	Produce global ba semicon output.
got growing gital nsumer goods w volume, gh complexity high mixed	Seeing n investme inflows o trade wa
oducts	Compani benefit fr themes s

Companies set to benefit from themes such as 5G, sensors, autonomous cars and IoT.

s 8% of

ack-end

ductor

nore

ents

due to

@2007 Robert J. Steiner

Source: MIDA

Sir se

kn

Historical moment. Launching of HP in Malaysia in 1972

One of the earliest electronics manufacturers in Malaysia was Texas Instruments which was set up in 1972

Malaysia Institute of Microelectronic Systems

MIMOS

The presence of MIMOS can be traced to the realization when government and university circles that microelectronics is imposing a pervasive influence upon human activities and is going to have an even more protound effect on future societies.

> 1 2 3 4 5 6

7 8 9

* 0 #

Sapura

the Euclamontal D establishment P Mality via 3 P

Necessary Infrastructures

For this to occur, four necessary infrastructures must be established.

> a pool of falented and creative designers who are capable of finding effective solutions to the problems faced in innovative product design.

> a sound inhastructure to initiate and sustain indigenous R & D activities.

SAPURA S2000

above

its main objectives are

- to undertake and conduct research and development activities in the field of microelectronic systems and related areas;
- to provide product testarch and development services to industry.

to contribute towards the creation of an indigenous poor of experts in microstectionic systems by organiering courses, semicars and other relevant holystes.

to encourage and support the creation of new indusbest based on high technology and moderti microdectionics.

to disserticable effortuation and research indirigs in the field of microriectronics to intended parties, and Understanding with the following companies: Easterns Ltd. (call of the CEC Marconi Group of CK). UM Encirch of

TM

consection of a true, tour PLA reputer System of a and inform a Original model with a import yield as and inform

e contr

ctives of

ied and will be d companies if

olds. Sweden

VISION 2020 IMPERATIVE

Leapfrogging development stages

Source: Access, Empowerment and Governance in the Information Age, Building Knowledge Societies Series, Volume 1, 2000, NITC Malaysia, NITC Malaysia Publication

INFORMATION & KNOWLEDGE AS FACTORS OF CHANGE AND VALUE CREATION

TRANSPORTATION

PUBLIC TRANSPORTATION - TRAINS

GKTM

SCS14

UBLIC TRANSPORTATION - BUSES

PUBLIC TRANSPORTATION - BUSES

20YEARS

SmartTAG

鼡

HIGER

myBAS

GOAUTO

100.34

Touch MGO

MALAYSIA NATIONAL CAR

NEXIS

\$50

Contraction of

SAGA

 \bigcirc

In terms of CONSTRUCTION INDUSTRY

前間算

100

百開首

100

100

21422372782732574245 22444742342426,7745 323342742,424 38332734262,424 05275242309 4247

REVOLUTIONISING CONSTRUCTION

4.0

There is a need to improve efficiency and streamline the construction industry with the use of updated tools

Modular Design and Construction (also known as IBS)

Building Information Modeling (BIM)

There was lukewarm reception from industry citing the following reasons:

- High cost of investment
- Low rate of investment returns
- Plenty of cheap foreign labour force

DISRUPTIVE TECHNOLOGY TO CHANGE

SOON-TO-BE OUTDATED MODE OF DESIGN, PLANNING AND OPERATON

NATIONAL FOURTH INDUSTRIAL REVOLUTION (4IR) POLICY

SUPPORT RMK - 12

4IR POLICY

Complement Malaysia Digital Economy

CONSTRUCTION INDUSTRY

INNIN INNI MATTALIA

1. Key guiding principles and strategic direction to ministries and agencies to formulate respective policies and action plans to implement such emerging technologies in a timely fashion.

2. Guidelines to address risks from 4IR technologies whilst preserving values and culture.

POSITION PAPER ON REVOLUTIONISING CONSTRUCTION 4.0

Issues and challenges faced by the industry

1. Smart Construction

Issue (i) finance and return on investment

Issue (ii) people factor – lack of knowledge and awareness

Lack of pilot project

Longer time needed to experiment & implement

No requirement or mandate to implement

Financial assistance/ incentive not strong enough

Issue (iii) predicament in the process of implementation

The main challenges in a nutshell are:

(a) Technology

- Technology and software cost*
- Training cost*
- (b) People
 - Lack of knowledge and awareness on ability and benefit of BIM*
 - Shortage of ready BIM training and manpower*
- (c) Process
 - Lack of time to experiment and implement BIM in projects
 - Lack of reference to assist in BIM implementation
 - No BIM requirement/mandate exist

Issues and challenges faced by the industry

2. Smart Materials

Main issues that inhibit its use are:

- the maturity of technology
- overall cost compared to conventional way of doing things
- change management in terms of applying new techniques
- lack of actual implementation.

PROPOSED SOLUTIONS

1. Smart Construction

To achieve a paradigm shift and transformation in the construction industry, government mandate is necessary to collaborate with the industry to adopt the revolutionary practices.

Recommendation	Agency to address
Monitor and provide subsidy for implementation	CIDB
of BIM	
Implementation of BIM on local district level	Kementerian Perumahan dan
	Kerajaan Tempatan (KPKT)
Specification of construction methodology and	Kementerian Kerja Raya
monitoring on government project	(KKR)
Implementation of BIM on government pilot	Kementerian Kerja Raya
project	(KKR)
Formulation of standard and guidelines on	Standards Malaysia
building and infrastructure	
Build up teams of trainers with BIM skills	Kementerian Sumber Manusia
Inclusion of smart construction courses in	Kementerian Pengajian Tinggi
university class and for fresh university graduates	(KPT), Institut Pengajian
	Tinggi (IPT)

Recommendations to be addressed by respective agencies

2. Smart Materials

- Tax cuts (especially on imports) to stimulate the adoption of technologies related to smart buildings that prove to be more efficient environmentally
- Develop incentives for smart building concepts and technologies adoption in construction development.

2. Smart Materials (contd/..)

- Increase investments in smart building technology courses
- Adopt proven effective technological standards and communication solutions to address lack of appropriate communication infrastructure
- Promote consumer engagement

Proposed solutions in summary are:

a) Economic constraint

- Tax system that allow tax break in use of smart materials
- Provide incentives for adoption of smart building concepts and technologies

b) Regulatory change

- To provide predictability to stakeholders who want to invest and to permit the sharing of infrastructure costs for adopting smart building concepts and technologies.
- To include usage of new smart materials and relevant standards or cods in the regulation in construction material use

Proposed solutions in summary are: contd/...

c) Social perception

• Consumer engagement to create awareness the benefit and method to adopt the new smart building technologies

d) Technical

- Increase investments in smart building technology courses
- Develop courses by official associations and universities for technical development
- Provide professional certifications by associations to qualified personnel
- Availability of communication infrastructure for big volumes of data

POSITION PAPER ON REVOLUTIONISING CONSTRUCTION 4.0

IEM website: www.myiem.org.my

ENGINEERING INNOVATIONS FOR A MORE RESILIENT CONSTRUCTIO **N INDUSTRY**

We are facing more and more challenges from natural disasters

SUSTAINABLE GEALS

Let us put all our knowledge and expertise together to **ENGINEER a better** and more sustainable world for our future generations

THANK YOUFOR Your attention

(‡)

0

 (\sim)

-