

Embodied Carbon Estimation: The Next Evolution of Quantity Surveying

Presented by: Ts. Amirul Izzat

© 2023 RIB Software GmbH and its subsidiaries. All rights reserved.

Climate Change

The world is now warming faster than at any point in recorded history

Disrupting usual **balance of nature** (United Nations)

© 2023 RIB Software GmbH and its subsidiaries. All rights reserved.

CO2 Emissions Today

🛞 RIB

CO2 Emissions Today

The construction industry is considered to be among the major sectors that contribute significantly towards the emission of GHGs in our environment, which have a major affect on the climate change, and Is approximately **responsible for about 40% of the overall GHG emission**

globally, rendering it a pollution hotspot requiring urgent mitigation measures. *(Labaran & Mathur et al., 2021)*

Y2040, the DISASTER is coming?

Pemanasan Global | Kiamat iklim 2040, Malaysia tidak terkecuali

Ais semakin mencair, gunung berapi kini mula aktif di Antartika dan suhu di kutub utara bukan membeku, tetapi berus sum sebaja. Semua petunjuk itu adalah kesep derinada persenasa alabah uapa tidak perseb berlaku tatap

The language of climate is evolving, from 'change' to 'catastrophe'

"Climate emergency" was used just 17 times prior to January 2019, but 283 times since.

UN Experts Warn of 'Climate Catastrophe' by 2040 Without 'Rapid' and 'Unprecedented' Global Action

"The climate crisis is here and already impacting the most vulnerable," notes 350.org's program director. "Staying under 1.5°C is now a matter of political will."

Underscoring the need for "rapid, far-reaching, and unprecedented" changes to life as we know it to combat the global climate crisis, a new report from the Intergovernmental Panel on Climate Change (IPCC)--the United Nations' leading body for climate science--details what the world

What is Embodied Carbon

 Refers to greenhouse gas (GHG) emission associated with the manufacture and use of product or services

- Associated with extraction, manufacturing, transporting, installing, maintaining, and disposing of construction materials and products.
- Embodied carbon regulation is **not fully addressed**.

Embodied Carbon Life Cycle

BS EN 15804 Life Cycle Module

How the world respond to it?

© 2023 RIB Software GmbH and its subsidiaries. All rights reserved.

Paris Agreement

PARIS2015 UN CLIMATE CHANGE CONFERENCE COP21.CMP11 1.5 degrees below pre-industrial level

Must peak before 2025 at the latest and **decline** 43% by 2030

5 years cycle, each countries will submit Nationally Determine Contributions (NSCs)

Long-term low greenhouse gas emission development strategies (LT-LEDS)

Enhance transparency framework (ETF)

Nationally Determine Contributions (NDCs) From several ASEAN Countries

- Increased its mitigation ambition with an unconditional target to cut carbon intensity against GDP by 45% by 2030 compared to 2005
- Covers seven greenhouse
 gasses
- To develop National Adaptation Plan and NDC Roadmap

- 41% reduction by 2030
- Betting and land use sector and the energy sector to contribute to the most to the emission reduction target
- **4.1%** of the state budget for emission reduction efforts
- Visi Indonesia 2045 and Long-Term Strategy on Low Carbon and Climate Resilient Development 2050

- Enhance peak emissions at 65MtCO2e by 2030
- Achieve 36% reduction in emissions intensity from 2005 levels by 2030
- 33MtCO2e by 2050 & Net Zero

Other Organization Involved

ACCEPT II

How the industry respond to it?

© 2023 RIB Software GmbH and its subsidiaries. All rights reserved.

How Industry resolves the problem?

Carbon Value Engineering (CO₂VE) FRAMEWORK (Robati et al.2021)

Design Alternatives

Concrete slab	P	Concrete slab	Steel column Concrete Steel beam Steel reinforcement	Steel Column CLT Steel Beam	Glue-Lam (Column) CLT Glue-Lam (Beam)	30%	50%	65% HPF
Base Case Building	ST.1	ST.2	ST.3	ST.4	ST.5	WWR of 50%	WWR of 30%	High Performance Façade
R.C structure with flat plate floor:	R.C structure with flat slab floor:	R.C structure with Post-tensioned	Steel structure with steel deck	Steel structure with Cross	Whole timber building: This	The same conventional	The same	The same WWR as the base
The base building used a flat	This scenario used a flat slab as	floor: This scenario uses a post-	floor: This scenario uses a steel	laminated timber floor (CLT): This	scenario goes beyond	façade as base	conventional	building (65%), but with
plate (FP) concrete	the main structural floor system.	tensioned (PT) flat slab structural	deck floor. The steel deck acts as	scenario uses a Cross Laminated	conventional practice to propose	building, but with a	façade as base	triple glazing and increased
structure. Flat plates provide a	The flat slab is a two-way system	floor system. A PT floor provides	a permeant formwork which does	Timber	a mass timber (MT)	WWR reduced from	building, but with a	insulation.
uniform thickness and a flat soffit	with thickenings at the vertical	the thinnest slab type and tends	not require dismantling and also	(CLT) slab and steel frame. CLT is a	design with CLT floors and glulam	65% to 50%	WWR reduced from	
which requires a simple	elements (columns and	to be faster on site due to a	benefits from minimum	solid wood construction product	columns, beams and trusses. A		65% to 30%	
formwork system.	loadbearing walls) to increase	reduction in concrete and steel	scaffolding requirements,	consisting of several bonded	growing body of research			
	shear capacity and the stiffness of	reinforcement. A key advantage	speeding up the construction	timber	suggests multi storey buildings			
	the floor system under vertical	of a PT slab is that it can reduce	process as well as reducing capital	boards (set at 90°). CLT is an	with MT structures can benefit			
	loads.	the number of columns, increase	costs	innovative structural material and	from reduced embodied carbon.			
		flexibility for internal planning		is lighter than R.C resulting in	This is due to timber materials			
		and minimise the overall height		a lower inertia response	emitting less GHG emissions			
		of the building.		generated from lateral loads. This	during phases A1 – A3 than			
				means it can potentially reduce	concrete and steel. In addition, as	i l		
				the amount of	trees sequester			
				concrete and steel reinforcement	carbon dioxide through			
				used in the structural	photosynthesis, timber buildings			
				components.	can provide long-term carbon			
					storage acting as a			
					carbon SINK [74,75]. In this			
					huilding the MT structure is			
					supplemented with			
					a concrete core for lateral			
					stability while basements also			
					remain concrete.			

Design Analysis

Embodied carbon emissions [Stages A1-A5,B4,C]

Benefit of QS (approach to Carbon Emission Estimation)

Quantity Surveyor is seen as one profession that can play big role in Carbon Estimation approach

🕺 10 (NI 🔹							Applewood University (AQ	A) - RIB CostX	?	• - • ×
File Home	e Draw	ings Dimen	sions Revisi	ons Workboo	ks Subcontractors					
Add -	All Laye) Rotate 90°	Add -	Positive 🔀 Line -	Add - Ass Spelling -	Arial Unicode Mar - 19	346		
Properties	S Invert L	ayers 0	Coom Extent	Properties	Negative 10 Add Manual	Properties Recalc		*		
Compare -	File Lay	ers View) Zoom Area	1 Export	🔟 Both 🕜 Accept All -	Reports - fx Function	B I ∐ ≣ ≣ ≡ 00 →0	System Administration *		
Drawings		View			Measuring	Workbooks	Format	Administration		\$
Dimension View	Work	book View								
Workbooks				*						
Name				Total						
ECA				15,230,176						
Elemental Est	timate			19,792,750						
Rates Values	s P	hraseologies	Workbool	k Values						
Dimension Grou	ips	Dimensions	Codes	Constants						
Click to Filter			<f< td=""><td>ilter is Empty></td><td></td><td></td><td></td><td></td><td></td><td></td></f<>	ilter is Empty>						
Name 100 GENERAL	Name Quantity UOM			UOM						
A - WORK BELOW LOWEST FLOOR FINISH										
C - UPPER FLOOR	R									
D - ROOF										
E - STAIRCASE										
G - INTERNAL WALL										
H - DOORS I - WINDOWS										
J - FLOOR FINISHES										
K - WALL FINISHE	ES SHES									
M - SANITARY PL	UMBING									
N - SUNDRIES	SERVICES									
P - HVAC										
Q - EXTERNAL WO	ORKS ATION									
	_									

- Integrate Carbon Emission estimations in CostX Workbook
- Carbon data repository in CostX library
- Projects rates library within the same platform

Summary of Benefits By implementing CostX solutions in 5D and 6D environment

Reducing waste, rework and able to balance between lower carbon builds with delivering profitable projects

Most of the younger generations now aware about green practices. Hence this can attract more youngster to be part of the team

More access to reliable, accurate and up-to-date carbon data

The process of making decision is derived based on available data hence it can generate more holistic view

Positioning as leaders in practicing sustainable building environment

We are **RIB**

Choose a global leader in software technology, fit-for-purpose for the AEC industry

*Recognized by Corporate Knights' Global 100 for the 12th year.

We stay true to our purpose, our mission and our vision

PURPOSE What we actually do	To make engineering and construction more efficient and sustainable.							

MISSION Our approach to delivering our purpose

We empower engineering and construction professionals around the globe to build more efficiently and sustainably. Our people deliver the world's leading end-to-end lifecycle solutions to our industry. Together with our customers and inspired by our purpose, we drive digital transformation that makes a difference to our customers' lives, our employees' lives and the planet - today and in the future.

VISION The outcome we aim to drive

To transform RIB to be the global powerhouse providing innovative software solutions in our markets.

We empower teams to build a digital thread through integrated 6D BIM

Digitizing every aspect of a building's lifecycle, including its footprint on the environment

© 2023 RIB Software GmbH and its subsidiaries. All rights reserved.

Digital Enabler for Construction in All Industries

Through our extensive portfolio of solutions, spanning the building lifecycle

9 out of the top 10 international Companies choose RIB

*ENR Top 250 International Contractors, 2022. Spans entire RIB product portfolio.

Building Better Together